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DCT Maps:
Compact Differentiable Lidar Maps Based on the

Cosine Transform
Alexander Schaefer, Lukas Luft, Wolfram Burgard

Abstract—Most robot mapping techniques for lidar sensors
tessellate the environment into pixels or voxels and assume
uniformity of the environment within them. Although intuitive,
this representation entails disadvantages: The resulting grid
maps exhibit aliasing effects and are not differentiable. In the
present paper, we address these drawbacks by introducing a novel
mapping technique that does neither rely on tessellation nor on
the assumption of piecewise uniformity of the space, without
increasing memory requirements. Instead of representing the
map in the position domain, we store the map parameters in the
discrete frequency domain and leverage the continuous extension
of the inverse discrete cosine transform to convert them to a
continuously differentiable scalar field in the position domain,
which we call DCT map. A DCT map assigns to each point in
space a lidar decay rate, which models the local permeability of
the space for laser rays. In this way, the map can describe objects
of different laser permeabilities, from completely opaque to
completely transparent. DCT maps represent lidar measurements
significantly more accurate than grid maps, Gaussian process
occupancy maps, and Hilbert maps, all with the same memory
requirements, as demonstrated in our real-world experiments.

Index Terms—Mapping, localization, range sensing, occupancy
mapping

I. INTRODUCTION

MAPPING and localization are at the heart of almost
every mobile robotic system. In this context, lidar is

a popular sensor modality, as lidar sensors produce relatively
accurate, low-noise signals. Using these signals for mapping
and localization requires an inverse and a forward sensor
model. The inverse sensor model converts recorded measure-
ments to a map. The forward model uses this map to assess
the probability of incoming sensor readings given the robot
pose. The maps produced by the inverse pass are often grid
maps: They tessellate the physical space into square pixels
or cubic voxels. Each pixel or voxel contains a value that is
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(a) DCT map with 40× 40 parameters.

(b) Grid map composed of 40× 40 pixels with edge length 25 cm.

(c) Grid map composed of 200× 200 pixels with edge length 5 cm.

Fig. 1: Decay rate maps of the same 10 m× 10 m patch of the
Intel Research Lab dataset [1] generated from the identical set
of planar lidar measurements. The colors encode the reflection
probability pref := 1 − exp(−λ), where λ denotes the local
laser decay rate.
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assumed to be constant within it. This value characterizes the
statistical optical properties of the corresponding portion of
space. Fig. 1b shows an example of such a grid map built
from 2-D lidar scans recorded in an office environment.

Although tessellation is intuitive, grid maps bring with them
several drawbacks. First, they can only coarsely approximate
the true spatial distribution of the optical properties of interest.
Aliasing effects occur whenever the optical characteristics of
the environment change, as these transitions are never perfectly
aligned with the raster of the grid. The grid map in fig. 1b ex-
hibits the resulting characteristic staircase patterns. Although
increasing the map resolution can theoretically alleviate this
problem (see fig. 1c), quadratic or cubic memory complexity
quickly renders this approach prohibitive. Depending on the
use case, non-cubic voxels may mitigate the errors induced
by tessellation [2]. Second, grid maps are not continuously
differentiable, although this is a desirable property of any
map. Continuous differentiability would allow to localize the
robot by maximizing the measurement likelihood over the
robot poses, and even to perform SLAM by maximizing the
measurement likelihood over the robot poses and the map
parameters.

In the present paper, we choose a different approach to
avoid the aforementioned detrimental effects without increas-
ing the memory demands. Inspired by well-established digital
image compression algorithms like JPEG, we store the map
parameters in the discrete frequency domain and use the so-
called continuous extension of the inverse discrete cosine
transform [3] to obtain a continuously differentiable scalar
field in the position domain. In addition to the regular inverse
discrete cosine transform, its continuous extension not only
computes the function values at discrete grid points in the
spatial domain, but also closely approximates them in between.
We combine this map representation with the recently devel-
oped decay rate model for lidar sensors [4]. The resulting DCT
maps model the local permeability of the space for laser rays.
Fig. 1a depicts such a DCT map. It was built from the identical
information as the grid map in fig. 1b and has the same
memory footprint, but it does not exhibit staircase patterns
and better preserves the map contours. Indeed, our experiments
show that DCT maps represent lidar data with higher accuracy
than other approaches. Moreover, the continuous derivatives of
DCT maps can be calculated in closed form, a fact that enables
optimization-based SLAM.

In the following, we first survey different map representa-
tions. Then, we describe the mathematics behind DCT maps
in detail. Finally, the findings of experiments conducted with
publicly available real-world 2-D lidar datasets are presented.

II. RELATED WORK

Occupancy grid maps [5] were among the first probabilistic
map representations used in robotics and are still widely used
today. They tessellate the space into independent cells and
assign each cell the posterior probability of being occupied.
Occupancy grid maps cannot model semi-transparent objects;
they assume that each cell is either completely free or com-
pletely occupied. In contrast, the decay rate model, which we

employ to formulate DCT maps, explicitly models the perme-
ability of each cell for a laser ray. If used in conjunction with
grid maps, it even allows to calculate posterior distributions
over the decay rate values without additional computational
effort [6].

While 2-D occupancy maps are able to model large areas,
even moderately-sized 3-D occupancy grids quickly outgrow
the memory limitations of modern computers. For this reason,
several research projects target compressed map representa-
tions. Elevation maps [7] assume that the environment can be
represented by a 2-D grid map whose cells contain not only
occupancy values, but also one height coordinate per cell. To
relax the assumption that the world is a single surface, [8]
extends elevation maps to multi-level surface maps. Multi-
volume occupancy grids [9] manage volumetric data as 2-
D arrays, too, but in contrast to multi-level surface maps,
each cell contains a list of occupied height regions and one
of free height regions. Octrees [10] approach the memory
limitation problem by hierarchically partitioning the space
using an octal tree data structure. They have found broad
application in robotics to model the spatial distribution of the
occupancy value [11], [12], [13]. The authors of [14] present
an octree-based data structure that is efficient to update and to
copy, so it can be used in particle filter-based SLAM, where
hundreds of maps must be maintained in parallel. To model the
dynamics of the environment, [15] assumes that the occupancy
values in an octree are subject to periodic changes. For each
cell, the authors record the occupancy value over time and
transform the resulting function to the frequency domain to
predict the occupancy value at a later point in time. In this
way, they achieve high compression ratios compared to storing
one occupancy map per time step. Multi-resolution occupied
voxel lists [16] differ from traditional occupancy mapping in
that they store only the positions of the voxels that have been
observed more frequently as occupied than as free. They are
neither able to differentiate between unoccupied and unknown
volumes, nor to account for semi-transparent voxels.

The normal distributions transform [17] was initially con-
ceived in the context of scan matching. Based on this work,
[18] introduces the so-called normal distributions transform
occupancy map. Basically, this map is a grid map, but instead
of a single scalar, every cell contains a normally distributed
occupancy probability density function, which is cropped at
the voxel bounds. In this way, it drops the assumption that
the space is uniform within each voxel. As opposed to DCT
maps, however, normal distributions occupancy maps achieve
higher accuracy at the cost of increased memory consumption.
Like all other occupancy-based approaches, they are not able
to model semi-permeable objects, either. Normal distributions
occupancy maps are extended and advanced in [19], [20], [21].

Other approaches completely abandon the notion of vox-
els. For example, [22] uses Haar wavelets to represent 3-D
occupancy data. The authors of [23] drop the restriction that
the elementary volumes of a map shall fill the space without
gaps. Instead, they model the environment by non-overlapping
spheres of equal sizes. In this way, they are able to more
closely represent curved surfaces.

Point clouds are a simple and convenient way to represent
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lidar sensor data. However, in contrast to occupancy maps
or decay rate maps, they are lossy in the sense that they
store only the endpoints of the rays. They discard the ray
path information of both reflected rays and rays that are
not reflected. When point clouds are used for mapping, they
accumulate memory for every incoming measurement, which
limits their suitability for long-term navigation. Despite their
drawbacks, many SLAM systems [24], [25], [26] represent
lidar data in the form of point clouds.

In object reconstruction in computer graphics, objects are
modeled as line segments in 2-D [27] or as polygon meshes
in 3-D [28]. The resulting models can achieve an astonishing
level of detail [29]. However, similar to mapping approaches
based on implicit shape potentials like KinectFusion [30], they
are not perfectly suited for lidar-based robot localization due
to their sheer memory footprint and their inability to deal with
semi-transparent materials.

Recently, machine learning techniques have completely re-
laxed the independence assumption between grid cells and
produce continuous occupancy maps. Gaussian process oc-
cupancy maps (GPOM), for example, learn the environment
of a robot and predict future states [31], [32]. Building on
the latter, the authors of [33] present an incremental GPOM
formulation that enables online mapping. Gaussian processes
have also been applied to other map representations like im-
plicit shape potentials [34]. Hilbert maps [35] are continuous
occupancy maps built by projecting the lidar measurements in
a Hilbert space, learning a logistic regression classifier, and
then classifying each point in space as free or occupied.

III. APPROACH

In this section, we shortly revisit how the decay-rate model
computes measurement probabilities conditioned on any kind
of map, then we define the map using the continuous ex-
tension of the inverse discrete cosine transform. With these
prerequisites, we derive the forward model, which computes
the probability of a lidar measurement given the spectral
parameters of the DCT map. In the last step, we formulate
the inverse model as an optimization problem: We estimate
the map parameters by maximizing the joint likelihood of all
measurements collected during mapping.

For brevity and without loss of generality, the following
derivation is performed for 2-D space. The derivation of the
forward and inverse sensor model in 3-D exactly parallels the
2-D case.

A. The Decay Rate Model

The decay-rate model [4] models the probability that a
lidar ray traverses a uniform medium as exponential decay
process. The corresponding map assigns a decay rate to each
point in space. This decay rate is a non-negative real number
that describes the interaction between the laser ray and the
environment completely.

To formulate the forward model mathematically, we in-
troduce the following definitions. A lidar measurement
z := {s, v, r} describes a ray that originates at the sensor
position s, travels in direction v, and ends after having traveled

distance r. Assuming that the sensor provides its true position
s, the true ray direction v, and that we are given a specific
map M, we model the non-deterministic interaction between
the ray and the environment by the measurement probability
density with respect to the radius

p(r) := p(r | s, v,M). (1)

Consequently, the absolute probability that the ray covers at
least distance r is

N (r) := 1−
∫ r

0

p(r′) dr′. (2)

Alternatively, we can express equation (2) in form of the
differential equation

p(r) = −dN (r)

dr
. (3)

The essential idea of the decay rate model consists in the
assumption that N (r) obeys an exponential decay process

dN (r)

dr
= −λ (r) N (r) , (4)

where λ(r) denotes the decay rate at a specific radius r along
the ray. By combining this model assumption with differential
equation (3), we obtain the measurement probability density

p(r) = λ(r)N (r). (5)

In (4) and (5), λ(r) is obtained by evaluating the map λ(x, y)
along the trajectory of the ray.

The above formulation of the decay rate model is indepen-
dent of any specific map representation. To use it as forward
model in combination with DCT maps, we need to define
the map function λ(r) and solve the differential equation. In
order to do so, we describe the spatial representation of DCT
maps in the next section in detail. After that, we have all
prerequisites at hand to solve the differential equation. The
solution enables us to express the measurement probability of
a lidar measurement given the map in closed form.

B. Transforming the Spectral Map Representation to the Spa-
tial Domain

To avoid the disadvantages related to tessellation, DCT
maps represent the map parameters in the discrete frequency
domain instead of the position domain. Calculating the mea-
surement likelihood from such a representation requires the
definition of the transformation from the frequency domain
to the spatial domain. We employ the continuous extension of
the inverse discrete cosine transform (CEIDCT) [3]. Like other
continuous extensions of Fourier-related transforms, it converts
a discrete signal in the frequency domain to a continuous
signal in the spatial domain. However, it differs from its rela-
tives in that the continuous signal converges to the continuous
function from which it was sampled for an increasing number
of parameters (see [3], pp. 11–12). Moreover, its parameters
are purely real-valued. For these reasons, it is particularly
suited for our use case.

If we assume the spectral map parameters to be given by
a matrix A with L rows and M columns, and if we denote
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the elements of A by alm with l ∈ {0, 1, . . . , L − 1} and
m ∈ {0, 1, . . . ,M − 1}, the CEIDCT transforms them to a
continuously differentiable decay rate map defined for each
point (x, y) in the spatial domain

λ(x, y) =

(
L−1∑
l=0

M−1∑
m=0

alm cos (lx̃) cos (mỹ)

)2

(6)

=

(
I−1∑
i=0

ai cos(lix̃) cos(miỹ)

)2

=

I−1∑
i=0

I−1∑
j=0

ai cos (lix̃) cos (miỹ)

aj cos (lj x̃) cos (mj ỹ)

=
1

8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

cos
(

(li + αlj)x̃+ β(mi + γmj)ỹ
) (7)

with I := LM and Q := {−1,+1}. The tildes denote the π-
normalization of the map coordinates: x̃ := πx

X , ỹ := πy
Y ,

where X and Y indicate the extent of the map. The variables
li and mi are the row and column indices into the matrix A
that correspond to its i-th element ai.

The original formulation of the CEIDCT does not square the
double sum in (6). We employ this variant, however, because
it ensures that the decay rate is non-negative for every point
in the map. Negative decay rates would cause problems, as
we cannot interpret the negative measurement probabilities in
which they might result.

To solve equation (4), we still need to transition from
λ(x, y) to λ(r) := λ(r, s, v). To that end, we apply the ray
equation [x, y]ᵀ = s+ v r to (7) and obtain

λ(r) =
1

8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

cos
(

(li + αlj) [s̃x + ṽxr]

+ β(mi + γmj) [s̃y + ṽyr]
)
.

(8)

C. Computing the Measurement Likelihood

Now we express the measurement probability of a lidar ray
as a function of the measurement z and the spectral represen-
tation of the map A by solving the differential equation (4).
The solution is

N (r) = exp { − S (s, v, r) } (9)

with

S (s, v, r) =

∫ r

0

λ(r′) dr′

=
1

8

I−1∑
i=0

I−1∑
j=0

ai aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

Aij

where

(10)

Aij :=A(i, j, α, β, γ)

=



[sin((li+αlj)[s̃x+ṽxr′]+β(mi+γmj)[s̃y+ṽyr′])]
r

0

(li+αlj)ṽx+β(mi+γmj)ṽy
,

if (li + αlj)ṽx + β(mi + γmj)ṽy 6= 0

r cos ((li + αlj) s̃x + β (mi + γmj) s̃y) ,

if (li + αlj)ṽx + β(mi + γmj)ṽy = 0

Note that out of the infinite number of solutions to (4), we
chose the one that satisfies the boundary condition N (0)

!
= 1.

By plugging equations (8) and (9) in (5), we finally obtain
the closed-form solution of the measurement likelihood p(r)
for rays with real-valued radius r.

Not all lidar measurements are real-valued, though. In
practice, the range of every lidar scanner is limited to a finite
interval [rmin, rmax]. We call the rays reflected outside this
interval no-return rays. In the following, we assume that the
sensor identifies rays falling below rmin by the tag sub and
rays that exceed rmax by the tag super. Consequently, the
space of all possible measurements r is the mixed discrete-
continuous set D := {sub, super, r′ : r′ ∈ [rmin, rmax]}.

Fortunately, the decay-rate model easily accommodates both
sorts of no-return rays:

P (sub) =

∫ rmin

0

p(r) dr = 1−N (rmin), (11)

P (super) =

∫ ∞
rmax

p(r) dr = N (rmax). (12)

Supporting no-return rays is an important feature of the
model. In a typical outdoor setting, no-return rays represent
a considerable fraction of all measurements. If the model is
unable to incorporate the information they convey, which is
the case for the endpoint model, for example, it will inevitably
loose accuracy.

During mapping and localization, one does not need to
evaluate the measurement probability of a single ray, but of a
whole laser scan Z := {zk} consisting of K rays, both with
real-valued radius and without detected reflection. To obtain
this probability, we first formulate the probability density
function for each ray over the mixed space D by combining
equations (5), (11), and (12) to

p (z | M) :=


P (sub), if r = sub

p(r), if r ∈ [rmin, rmax]

P (super), if r = super

The above result, which we call a mixed probability density, is
positive, real, and integrates to unity. Using the independence
assumption, we then compute the joint probability density of
all rays as the product

p (Z | M) =

K−1∏
k=0

p (zk | M) .
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D. Building the Decay Rate Map

During the inverse pass, we want to determine the map pa-
rameters A that best explain the lidar measurements collected
in the mapping run:

A = argmax
A

p(Z | A) = argmax
A

log
{
p(Z | A)

}
.

This non-linear multivariate optimization problem can be
solved by iterative computational optimization techniques like
stochastic gradient descent or trust-region methods. These
methods work considerably more reliable and faster when pro-
vided with first-order and second-order analytical logarithmic
derivatives with respect to the spectral map parameters. To
calculate the derivatives, we introduce the following shortcut
notation:

∂λ(x, y)

∂ai
=:

I−1∑
j=0

aj Bij =: Bi,

with

Bij := 2 cos(lix̃) cos(miỹ) cos(lj x̃) cos(mj ỹ)

and

∂N
∂ai

= −N ∂S (s, v, r)

∂ai
=: −N Ci

where

Ci =
1

8

I−1∑
j=0

aj
∑
α∈Q

∑
β∈Q

∑
γ∈Q

Aij +Aji =:
I−1∑
j=0

aj Cij

with Aij as defined in (10). Using this notation, we can express
the first-order logarithmic derivative of the absolute probability
P (z | A) of a single measurement in a compact way:

∂ log {p(z | A)}
∂ai

=


NCi

1−N , if r = sub
Bi

λ − Ci, if r ∈ [rmin, rmax]

−Ci, if r = super

The derivative of the joint absolute measurement probability
is then simply the sum of the derivatives of the individual
measurement likelihoods

∂ log {p(Z | A)}
∂ai

=

K−1∑
k=0

∂ log {p(z | A)}
∂ai

.

The second-order derivatives of the measurement likelihood
with respect to the map parameters are given by

∂2 log {p(z | A)}
∂aj∂ai

=


N(Cij−CiCj)

1−N +
N2CiCj

(1−N)2
, if r = sub

Bij

λ −
BiBj

λ2 − Cij , if r ∈ [rmin, rmax]

−Cij , if r = super

As before, the second-order derivative of the joint measure-
ment log-likelihood is the sum of the second-order derivatives
of all measurements.

IV. EXPERIMENTS

To assess how well DCT maps represent lidar data in
comparison to existing mapping approaches, we conduct three
series of experiments. In the first series, we compare the
spatial map values of DCT maps and grid maps with identical
memory requirements to a ground truth map and use the
resulting error as a measure of map accuracy. In the second
series, we evaluate the likelihoods that DCT maps, grid maps,
Gaussian process occupancy maps, and Hilbert maps assign
to measurements that were used to build them. The higher
this likelihood, the better the respective map explains the
underlying data. We conclude this section with a comparison
of the empirical execution times of the different approaches.

The data at the basis of our experiments stems from rich
planar lidar datasets recorded in spacious indoor environments.
Each set contains the corresponding robot poses computed by
SLAM, which we use as ground truth poses to build all maps.
The data is publicly available from the Robotics Data Set
Repository [1]. Table I shows which datasets were used in
our experiments.

A. Map Value Comparison

In this experiment series, we compare the map values of
DCT maps and decay rate grid maps of different resolutions
to the values of a decay rate ground truth grid map. All grid
maps are computed according to the algorithm described in
[4]. At the beginning, for each dataset, we create a fine-
grained ground truth grid map that covers a 10 m × 10 m
patch densely filled with 104 lidar measurements. It consists
of 200× 200 pixels with an edge length of 0.05 m. Then, we
use the same sets of measurements to build pairs of one DCT
map and one grid map, respectively, for each dataset and each
resolution. The maps in these pairs possess the same number
of parameters and require the identical amount of memory. We
use five different map resolutions: 10× 10, 13× 13, 20× 20,
29× 29, and 40× 40. For grid maps, they correspond to pixel
edge lengths of 1.00 m, 0.75 m, 0.50 m, 0.35 m, and 0.25 m.
To give an intuition of what these maps look like, fig. 1
exemplarily shows the 40×40 DCT map of the Intel Research
Lab dataset, the corresponding grid map, and the ground truth
grid map.

Having created the maps, we sample the ground truth map
at the midpoints of all cells that were observed at least
once and look up the corresponding values in the DCT map
and in the grid map. The resulting map values are hard to
compare: As the decay rate λ is defined over the half-open
interval [0,∞), the map values might be infinite. In order
to make them comparable, we employ the strictly increasing
monotonic transformation function pref = 1− exp(−λ), which
maps every decay value to a finite value pref ∈ [0, 1]. The
value pref can be interpreted as the absolute probability that
a ray is reflected before having traveled a distance of 1 m in
a hypothetical homogeneous medium of decay rate λ. Please
note that the distance 1 m is an arbitrarily chosen parameter.
However, while surveying different distance values, we found
out that varying this parameter has little effect on the quality of
the results. We compute the root mean squared error (RMSE)
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in pref between the DCT maps and the ground truth map and
between the grid maps and the ground truth map. Table II
condenses the corresponding results by determining the mean
and the standard deviation of the RMSE values. Additionally,
it indicates the p-values of the one-sided paired-sample t-test.
Small p-values indicate that the null hypothesis is unlikely
and that the alternative hypothesis – the mean RMSE of DCT
maps is smaller than the one of grid maps – becomes likely.

While at a resolution of 10 × 10, both map modalities
hardly differ in terms of accuracy, for all finer resolutions,
DCT maps outperform grid maps at a confidence level of at
least 99 %. Note that the maximum gain in accuracy is located
at a resolution of 29× 29; at 40× 40, DCT maps are still
significantly more accurate than grid maps, but the gain is not
as large as for 29× 29. We attribute this to the fact that with
increasing resolution, grid maps converge to the ground truth
map, which itself is a grid map.

B. Measurement Probability Comparison
The maps computed in the first experiment series are

maximum likelihood maps. Maximum likelihood maps shall
maximize the measurement probability of the data that was
used to create them. The higher this likelihood, the better
the map represents the underlying data. Consequently, in the
second experiment series, we interpret the likelihood a map
assigns to its underlying data as a measure of its quality. We
compare four different approaches: DCT maps, decay rate grid
maps, Gaussian process occupancy maps (GPOM), and Hilbert
maps, which also model the spatial occupancy probability as
a continuous scalar field. More specifically, we use GPOMs
with Matérn kernel functions as described in [33] and Hilbert
maps with Nyström features, which, according to [35], give
the most accurate map results. All hyperparameters are set as
described in [33] and [35], respectively. The data at the basis
of the experiments is the same as in the previous experiment
series, but the number of lidar measurements is reduced to
500.

The comparison is designed to guarantee that all maps have
the same memory requirements in terms of numbers of real-
valued parameters. For grid maps and DCT maps, we can
ensure that by comparing maps with the same number of
pixels and spectral parameters, respectively. For GPOM, we
randomly downsample the design matrix and the target vector
so that the length of the Gaussian process parameter vector
matches the number of grid pixels and spectral parameters,
respectively. For Hilbert maps, we set the number of compo-
nents of the Nyström features to the number of parameters
corresponding to the specific resolution.

Now, we compute the joint measurement likelihood of all
lidar measurements for each map modality. For grid maps,
we calculate the measurement likelihood according to [4]. For
DCT maps, we follow the equations given in section III-C.
For GPOMs and Hilbert maps, we rasterize their continuous
occupancy fields with a pixel edge length of 0.05 m, perform
ray tracing, and cumulate the occupancy probabilities along
the rays.

Table III displays the resulting findings: the mean and
standard deviation of the log-likelihood differences between

DCT maps and the other approaches over all datasets. After
having performed Anderson-Darling tests to ensure that the
measurement probability quotients are indeed log-normally
distributed, we perform one-sided paired-sample t-tests. For
all resolutions, they indicate that DCT maps yield significantly
higher measurement log-likelihoods at a confidence level of at
least 98.56 %.

The results show that the log-differences between DCT
maps and grid maps are two magnitudes smaller than those
between DCT maps and GPOM or Hilbert maps, respec-
tively. The level of the difference is influenced by the raster
size chosen when computing the measurement likelihood for
GPOMs and Hilbert maps. But the main reason for these large
differences is the fact that both GPOMs and Hilbert maps
have comparatively high memory requirements. GPOMs store
the map information in the parameter vector. The number
of training points processed is proportional to the length
of the parameter vector. As we restricted this length, only
a limited number of training points could be processed; as
a consequence, the classification results of GPOMs remain
rather vague. As far as Hilbert maps are concerned, in [35],
the authors recommend to use 1000 components for mapping
with Nyström features. In our experiments, we use numbers
as small as 100 parameters. Additionally, both GPOMs and
Hilbert maps suffer from the fact that they need to sample
a limited number of free and occupied training points along
the laser rays, whereas DCT maps and decay rate grid maps
incorporate the full path information of an arbitrary number of
rays. Fig. 2 illustrates the resulting differences in accuracy be-
tween the maps produced by the four approaches for 13× 13
parameters.

C. Execution Times

To give an intuition of the empirical runtime requirements of
each of the methods used in the previous section, we average
over ten mapping runs performed per method, dataset, and
resolution. Table IV lists the medians of these averages over
all datasets. The measurements are collected on an Intel i7-
2600K CPU running at 3.40 GHz. Grid maps, DCT maps, and
GPOM are implemented in MATLAB R2017b. The GPOM
implementation is based on the publicly available GPML
toolbox [36]. To time Hilbert maps, we customized the Python
implementation provided by [35]. The DCT optimization pro-
cess is stopped once the relative change in the measurement
log-likelihood is smaller than 1 · 10−3.

Table IV indicates that grid maps are by far the fastest
mapping technique. DCT maps and GPOMs are approximately
two orders of magnitude slower. This is due to the fact that
during the optimization phase, DCT maps and GPOMs need
to consider all parameters, which leads to quadratic compu-
tational complexity in the number of parameters. The most
expensive operation in grid mapping, however, is ray casting,
resulting in approximately linear computational complexity in
the map resolution. Hilbert maps are three to four magnitudes
slower than grid maps, the reason for this probably being
the non-differentiable nature of the objective function, which
needs to be approximated using finite differences.
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(a) DCT map. (b) Grid map. (c) GPOM. (d) Hilbert map. (e) Ground truth grid map.

Fig. 2: Maps of different modalities created in the experiment series described in section IV-B for the University of Washington
dataset. The four maps to the left all have the same memory requirements of a mere 169 real-valued parameters. The grid map
(e) is given as ground truth with a resolution of 40× 40. The decay rate maps (a), (b), (e) show pref values as described in
section IV-A, the other maps show occupancy probabilities. Blue means 0, green means 0.5, yellow means 1.

Acapulco Conv. Ctr. Edmonton Conv. Ctr. Uni. Freiburg, 101
Uni. Texas, ACES3 FHW museum Infinite corridors
Belgioioso Castle Uni. Washington, Seattle Intel Research Lab
MIT, CSAIL Uni. Freiburg, 079 Örebro University

TABLE I: The 12 datasets taken from the Robotics Data Set
Repository [1] and used in all three experiment series.

DCT GM
l [m] µ σ µ σ p [%] ∆µ [%]
1.00 0.3314 0.0679 0.3330 0.0708 39.36 0.48
0.75 0.3146 0.0675 0.3319 0.0752 1.01 0.52
0.50 0.2932 0.0645 0.3093 0.0690 0.03 5.21
0.35 0.2571 0.0611 0.2822 0.0672 0.05 8.89
0.25 0.2370 0.0563 0.2543 0.0583 0.07 6.80

TABLE II: Mean and standard deviation of the absolute RMSE
values of DCT maps and grid maps with respect to the ground
truth map, computed over all datasets. GM denotes grid maps,
l is the pixel edge length, µ and σ denote the mean and the
standard deviation of the RMSE, respectively, and p is the
p-value of the one-sided paired-sample t-test. The variable
∆µ := 1− µDCT

µGM
indicates the improvement in RMSE of DCT

maps relative to grid maps.

lpDCT − lpGM lpDCT − lpGPOM lpDCT − lpHM

l [m] µ σ µ [104] σ [104] µ [104] σ [104]

1.00 88.5 74.1 4.21 3.00 4.30 3.42
0.75 150.6 146.5 3.89 2.81 4.19 3.46
0.50 135.7 63.9 3.53 2.60 4.06 3.42
0.35 196.1 101.5 2.97 2.15 4.12 3.32
0.25 96.8 132.0 2.68 1.90 4.12 3.31

TABLE III: Mean and standard deviation of the log-likelihood
differences between DCT maps and the other mapping ap-
proaches, computed over all datasets. The variable lp denotes
the cumulated log-likelihood of all measurements in one
dataset, GM denotes grid maps, HM means Hilbert maps,
l is the pixel edge length, and µ and σ are the mean
and the standard deviation of the log-likelihood differences,
respectively.

l [m] tDCT [s] tGM [s] tGPOM [s] tHM [s]

1.00 3.52 0.0917 1.12 22.8
0.75 4.69 0.0915 1.98 40.6
0.50 3.70 0.0923 3.25 108.4
0.35 18.25 0.0926 6.45 328.3
0.25 39.84 0.0942 14.04 949.3

TABLE IV: Empirical execution time measurements collected
during map creation. The variable t denotes the median of the
mapping times over all datasets.

V. CONCLUSION AND FUTURE WORK

We presented a novel map representation based on the
recently introduced decay rate model for lidar sensors [4]. In
contrast to most conventional maps, our so-called DCT maps
store the map parameters in the discrete frequency domain. We
applied the continuous extension of the inverse discrete cosine
transform to the spectral parameters to obtain a continuously
differentiable scalar field in the position domain.

Compared to other mapping approaches like decay rate grid
maps, Gaussian process occupancy maps (GPOM), and Hilbert
maps, the proposed approach results in significantly improved
map accuracy, as demonstrated in extensive real-world ex-
periments. Moreover, DCT maps provide a ray tracing-based
forward sensor model that allows to infer measurement proba-
bilities directly from the spectral map representation in closed
form, whereas the computation of ray tracing-based measure-
ment probabilities based on continuous occupancy maps like
GPOM and Hilbert maps necessitates the rasterization of the
map and hence the introduction of a rasterization parameter.
As opposed to GPOM and Hilbert maps, DCT maps use the
full ray path information when building the map instead of
sampling points along the ray.

Due to the promising experimental results, we plan improve-
ments and extensions of DCT maps. First, we will address
the issue that the computational complexity of DCT maps is
higher than the one of grid maps, and that incremental updates
require the repeated optimization of the map parameters. More
specifically, we will develop a hybrid approach that locally op-
timizes the map and that makes use of massive parallelization.
Second, we will extend the method by explicitly representing
unexplored areas in the map. Currently, DCT maps are not able
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to distinguish between observed and unobserved map regions.
Third, we will investigate how well DCT maps are suited
for lossy compression. Finally, we plan to present a complete
SLAM system based on DCT maps in the near future.
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